Бесплатная горячая линия

8 800 700-88-16
Главная - Другое - Доработка зу для авто аккумулятора

Доработка зу для авто аккумулятора

Доработка зу для авто аккумулятора

Доработка зарядного устройства

Когда-то в детстве для отца собрал примитивное импульсное зарядное устройство с конденсаторной развязкой в первичной цепи трансформатора (4 мкф х 400 в). Импульсным оно называлось потому, что заряд осуществлялся модифицированной полу синусоидой, при этом за счет конденсатора и дополнительной лампочки (резистора), происходил разряд в «нерабочий» полупериод мощностью 0,1 от тока зарядки. Аккумуляторы с этим выпрямителем служили лет по 5 (для советского времени – срок приличный).В этом году, когда понадобился зарядник, оказалось, что он пришел в негодность – контакты поржавели, стал «пробивать» на корпус.

В связи с тем , что пыл радиолюбительства с годами поубавился, решил прикупить импульсник — автомат, чтобы поменьше мороки было — по принципу включил (когда надо), выключил (когда заряд прекратился), и забыл до следующей необходимости.

Выбор импульсных зарядных устройств довольно большой, но, похоже, что китайские друзья удачно доработали Датские, либо Итальянские радиосхемы, в результате чего современные устройства отличаются друг от друга только качеством сборки. Во многих руководствах тиражируют полный бред:

«…устройство автоматически очищает клеммы от сульфатов…»

— по всей видимости сию галиматью перепечатывают люди, не знающие разницы между клеммами и анодом аккумулятора, где как раз таки и происходит сульфатация (Pb2SO4+H2SO4+O, равно 2PbSO4+H2O).

Это процесс, усиливающийся при разряде, вызывает разрушение электрода, а импульсный заряд вроде снимает, или уменьшает сульфатацию. Итак, принципиальных различий между импульсными зарядными устройствами – автоматами нет (все пишут о семи-, либо девяти-этапной зарядке, на мой взгляд это чистой воды рекламный ход, тем более остается возможность для дальнейшего полета мысли, типа двадцати-этапный, тридцати-этапный, и.т.д.), поэтому исходя из мощности аккумулятора, выбирать надо что подешевле.

В моем случае –это устройство с нелепым названием для зарядника «Агрессор» (AGR/SBC-080 Brick) по цене на 02.2016г.

2750 рублей с функцией десульфатации и током заряда до 8А, рассчитанный на заряд аккумуляторов до 160 а.ч.Устройство внешне выглядит добротно – хороший толстый (но ужасно вонючий) пластик, из-за хорошо подогнанной резиновой прокладки нет нареканий к швам, прибор интуитивно понятен, но есть одно «НО» — нет индикации по напряжению и силе тока.

В некоторых случаях «зимний» заряд током от 8А самостоятельно перескакивает на заряд 2А (мотоциклетный аккумулятор), при этом светодиоды показывают заряд, а дополнительно подключенный амперметр – его отсутствие. Зарядные устройства с индикацией силы тока и напряжения стоят на порядок дороже – в пределах 200$, между тем, нехитрая доработка любого, подчеркиваю, любого зарядного устройства с помощью ампервольтметра, допустим, за 250 – 300 рублей, превратит Ваше устройство в более привлекательное и удобное в использовании оборудование.Ампервольтметр можно расположить либо в самом зарядном устройстве (если для него есть место), либо вне его – в специальной коробочке, подключив его к проводам, идущим к аккумулятору для зарядки.

Для подбора места, проведем ревизию зарядника, для чего отжимаем боковые пластмассовые накладки и выкручиваем 6 шурупов.

Сняв крышку, видно, что на лицевую панель ампервольтметр не поместить – иначе придется изменять плату.

Для вывода ампервольтметра на заднюю панель, есть несколько мест, я выбрал поближе к кабелям зарядки.Примерное место расположения ампервольтметра.

Подрезав немного кусачками корпус ампервольтметра, максимально удобно расположил прибор внутри корпуса (несколько левее средней линии), после чего аккуратно перевернул зарядник, сохранив место, где ампервольтметр будет установлен в корпус зарядника и очертил отверстие. Далее, дело домашней техники — за 15 минут по внутренней стороне очерченного прямоугольника насверлил тонким сверлом при помощи дрели или шуруповерта около 40 отверстий, этим же сверлом объединил их и освободил окошко для ампервольтметра.

Поправив напильником кромки, установил ампервольтметр в окошко и закрепил его термоклеем. Ампервольтметр плотно и довольно крепко разместился в окошке, не выступает за пределы ограничителя, при этом почти вся информация на тыле сохранилась. Далее, перерезав (-) минусовый провод зарядника (черный), припаиваем к верхней части черный провод амперметра (у амперметра два толстых провода – красный и черный), а к нижней части провода, идущего к аккумулятору – красный провод амперметра и черный провод вольтметра.

К оголенному (+) плюсовому проводу зарядника припаиваем красный и желтый провод вольтметра (проводов вольтметра три – желтый, красный и черный, они более тонкие).

Места пайки закрываем термоусадкой, либо изолентой, и, можно приступать к зарядке.Подсоединив клеммы (+) и (-) к аккумулятору, на дисплее ампервольтметра можно посмотреть его напряжение, а сила тока заряда появится после включения прибора в сеть и выбора режима. Есть одно неудобство – кнопка переключения режимов находится с лицевой стороны, а ампервольтметр – с тыльной, но это лишь немногим умоляет переделку. Как видно, переделка не коснулась принципиальной схемы, а лишь затронуло кабели, идущие к заряжаемому аккумулятору, в связи с чем возможен наружный вариант расположения ампервольтметра в небольшом корпусе как для данного зарядного устройства, так и любого другого.С уважением, Вадим Захаров.

  1. 80

Комментарии (2) Смотрите также:

Зарядное Устройство для АКБ Авто на Двух Тиристорах

26 января Самостоятельное изготовление зарядного устройства для свинцово-кислотных автомобильных аккумуляторов с точки зрения схемотехники не составляет особого труда. Даже при наличии различных регулировок, таких как установка зарядного тока, например, и автоматики отключения, сложность схемы не будет превышать средний уровень.

Вопрос здесь в другом — комплектующие для зарядного устройства. Если говорить о схемах, где в качестве преобразования сетевого напряжения выступает трансформатор, то именно его наличие и определяет целесообразность построения схемы. Потому как прежде чем специально покупать трансформатор, много раз подумаешь, глядя на нынешние «конские» ценники.

В этой статье я хочу предложить Вашему вниманию простейшую зарядку на двух тиристорах. Через один из них непосредственно осуществляется зарядка аккумулятора, а другой служит для отключения АКБ по её завершению. Ну и сразу о самой дорогой «запчасти» — о трансформаторе.

Именно он в схеме определяет зарядный ток.

Здесь использован силовой понижающий трансформатор с двумя вторичными обмотками по 15 В (отвод от середины). При наличии такого трансформатора, или хотя-бы железа для его изготовления можно изготовить простое и надёжное зарядное устройство, схема которого показана ниже.

Трансформатор, как я уже написал выше, содержит две вторичных обмотки по 15 В (или одну на 30 В с отводом от середины). Его мощность в данной схеме и будет определять зарядный ток аккумулятора.

Выпрямляется напряжение со вторичных обмоток двумя диодами — VD1 и VD2. Глядя на этот выпрямитель сразу бросается в глаза отсутствие сглаживающего конденсатора. Но на самом деле здесь нет никакой ошибки, потому как на этом основан весь принцип работы этого зарядного устройства.

Давайте разберёмся почему. Сначала рассмотрим цепь на тиристоре VS1, через который и происходит непосредственно заряд аккумуляторной батареи. На аноде тиристора VS1 действует пульсирующее напряжение частотой 100 Гц по амплитуде напряжение это изменяется от нуля до 20 В.

Короче говоря, это положительные полуволны со вторичной обмотки трансформатора Т1. Для перехода тиристора в открытое состояние включена цепочка R1VD4 между его анодом и управляющим электродом.

Ток в этой цепи имеет достаточное значение (около 15 мА) для его открытия. При этом, когда тиристор находится в активном режиме работы, то горит светодиод VD4.

Между катодом тиристора и общим проводом, который соединён со средней точкой вторичной обмотки трансформатора Т1, подключается заряжаемая аккумуляторная батарея.

Так происходит заряд аккумулятора.

А теперь давайте рассмотрим какое условие нужно создать для закрытия тиристора и прекращения зарядки. Вариантов два: разорвать саму цепь заряда аккумулятора или снять управляющий ток.

Так вот при снятии управляющего тока, тиристор всё равно останется в открытом состоянии (свойство тиристора), пока протекает достаточный ток (ток удержания) в цепи между его анодом и катодом. Но в этой схеме в цепи действует пульсирующее напряжение, и именно когда напряжение равно нулю происходит закрытие тиристора, потому как прекращается прохождение тока и тиристор больше не чего не удерживает.

Этого бы не произошло при наличии сглаживающей ёмкости в выпрямителе т.к. напряжение всегда было бы отлично от нуля. Теперь к цепи на VS2, которая служит для отключения АКБ (закрытию тиристора VS1) по завершению заряда.

Принцип основан на разнице напряжений АКБ в разряженном и заряженном состоянии.

Напряжение работы стабилитрона VD3 (12 В) выставляется с помощью потенциометра R2. Значение напряжения полного заряда АКБ должно соответствовать началу перехода VD3 в активное состояние, т.е.

в состояние, когда через него будет протекать ток. При этом создастся условие для открытия тиристора VS2. Об открытии тиристора VS2 будет сигнализировать светодиод VD5 зелёного цвета «завершение заряда». При этом ток в цепи управляющего электрода VS1 станет уже недостаточным для его открытия, и он закроется в момент нулевого напряжения.

При этом ток в цепи управляющего электрода VS1 станет уже недостаточным для его открытия, и он закроется в момент нулевого напряжения.

показана на рисунке выше. Вся настройка устройства сводится к установке порога срабатывания цепи тиристора VS2 подстроечным резистором R2. Делают это на полностью заряженном АКБ. Порог открытия определяется свечением светодиода VD5, в то время, когда VD4 наоборот тухнет.

Тиристор VS1 должен быть закреплён на теплоотводе. Светодиоды VD4 и VD5 любые на номинальный ток 10 мА красного и зеленого цвета соответственно.

Зарядное для автомобильного аккумулятора

Знаю что достал уже всякими разными зарядными, но я не мог не повторить улучшенную копию тиристорной зарядки для автомобильных аккумуляторов.

Доработка этой схемы дает возможность больше не следить за состоянием заряженности АКБ, так же обеспечивает защиту от переполюсовки, а так же сохраняет старые параметры Слева в розовой рамке представлена уже давно известная схема фазоимпульсного регулятора тока, подробней о преимуществах этой схемы можно почитать Тиристорное зарядное устройство В правой части схемы представлен ограничитель напряжения автомобильного аккумулятора. Смысл этой доработки заключается в том, что бы при достижении на аккумуляторе напряжения 14,4В, напряжение с этой части схемы блокировала подачу импульсов на левую часть схемы через транзистор Q3 и зарядка завершается.

Схему я выложил такой как нашел, лиж на печатной плате изменил немного номиналы делителя с подстроечником Вот такая печатная плата у меня получилась в проекте SprintLayout Скачать печатную плату зарядного для автомобильного аккумулятора. А так же вариант от Владимира Скачать печатную плату Прочитайте Получить пароль от архива На плате изменился делитель с подстроечником, как выше говорил, а так же добавил еще один резистор для переключения напряжений между 14,4В-15,2В.

Это напряжение 15,2В необходим для зарядки кальциевых автомобильных аккумуляторов На плате три светодиодных индикатора: Питание, АКБ подключен, Переполюсовка. Первые два рекомендую поставить зеленые, третий светодиод красный. Переменный резистор регулятора тока устанавливается на печатную плату, тиристор и диодный мост вынес на радиатор.

Переменный резистор регулятора тока устанавливается на печатную плату, тиристор и диодный мост вынес на радиатор.

Выложу пару фоток собранных плат, но пока не в корпусе. Так же пока нет испытаний зарядного устройства для автомобильных аккумуляторов.

Остальные фото выложу как буду в гараже Так же начал рисовать лицевую панель в этом же приложении, но пока жду посылку с Китая, панелью еще не начинал заниматься Так же нашел в интернете таблицу напряжений аккумулятора при разных степенях заряженности, возможно кому то пригодится Вот такое отличное устройство собралось.

Рекомендую так же почитать статью про первые варианты этой схемы Тиристорное зарядное устройство Интересна будет статья про другое простое зарядное устройство Простое зарядное устройство своими руками А так же интересно будет прочитать про защиту от переполюсовки Схема защиты АКБ от переполюсовки Что бы не пропустить последние обновления в мастерской, подписывайтесь на обновления в Вконтакте или Одноклассниках, так же можно подписаться на обновления по электронной почте в колонке справа Не хочется вникать в рутины радиоэлектроники?

Рекомендую обратить внимание на предложения наших китайских друзей.

За вполне приемлемую цену можно приобрести довольно таки качественные зарядные устройства Зарядное устройство 12В 1.3А Простенькое зарядное устройство с светодиодным индикатором зарядки, зеленый батарея заряжается, красный батарея заряжена.

Есть защита от короткого замыкания, есть защита от переполюсовки.

Отлично подойдет для зарядки Мото АКБ емкостью до 20А\ч, АКБ 9А\ч зарядит за 7 часов, 20А\ч — за 16 часов. Цена на это зарядное всего 403 рубля,доставка бесплатна Универсальное зарядное устройство 12-24В 10А Зарядное устройство для самых разнообразных типов аккумуляторов 12-24В с током до 10А и пиковым током 12А. Умеет заряжать Гелиевые АКБ и СА\СА.

Технология зарядки как и у предыдущего в три этапа.

Зарядное устройство способно заряжать как в автоматическом режиме, так и в ручном. На панеле есть ЖК индикатор указывающий напряжение, ток заряда и процент зарядки.

Хороший прибор если вам надо заряжать все возможные типы АКБ любых емкостей, аж до 150А\ч Цена на это чудо 1 625 рублей, доставка бесплатна.

На момент написания этих строк количество заказов 23, оценка 4,7 из 5. При заказе не забудьте указать Евровилку Если какой то товар стал недоступен, пожалуйста напишите в комментарий внизу страницы.

На этом все. Задавайте вопросы через форму ниже. С ув Эдуард Орлов Похожие материалы:

  1. Блок питания, зарядное из бесперебойника
  2. Маломощный блок питания и зарядное устройство
  3. Зарядное устройство XL4015 плюс регулируемый блок питания
  4. Зарядное для LI-Ion аккумуляторов TP4056
  5. Зарядное из компьютерного блока питания

Загрузка. Распродажа на АлиЭкспресс. Успей купить дешевле!

Понижающий Dc-Dc преобразователь XL4016 Характеристики: Ток(макс) 5А(8А) Вх. напряжение 4-40V Вых. напряжение 1.25-36V Макс. мощность 200 Вт КПД: 94% Размер: 61*41*27 мм Цена: 251руб.

Купить Навигация по записям Предыдущая запись Предыдущие записи:Следующая запись Следующие записи: Внимание!!! Если при загрузке сайта появляеться уведомление, что соединнение с сайтом не безопасно, обновите свою систему, скачав последние обновления с сайта MicroSoft С ув.

Эдуард Электроника и электрика

    • Азбука радиолюбителя
    • Инструменты электронщика
    • Высоковольтный генератор
    • Датчики
    • Электродвигатели
    • Мигалки и пищалки
    • Полезное из интернета
    • Справочник компонентов
    • Источники питания
      • Зарядные устройства
      • Импульсные блоки питания
      • Преобразователи 220В
      • Примочки в блоках питания
      • Регулятор напряжения, тока
      • Сварочные аппараты
    • Сварочные аппараты
      • Самодельные сварочные аппараты
      • Ремонт сварочные аппаратов
    • Аудиоапаратура
      • Индикаторы звука
      • Предварительные усилители звука
      • Примочки для электрогитары
      • Регуляторы тембра
      • Транзисторный усилитель звука
      • Усилители звука автомобильные
      • Усилители звука на микросхемах
    • Ремонт Электроники
      • Ремонт Автомагнитол
      • Ремонт Аудио Видео
      • Ремонт блока питания
      • Ремонт бытовой техники
      • Ремонт Телефонов
  1. Зарядные устройства
  2. Ремонт сварочные аппаратов
  3. Преобразователи 220В
  4. Настройка
  5. Альтернативная энергетика
    • Ветрогенератор
  6. Регуляторы тембра
  7. Предварительные усилители звука
  8. Аудиоапаратура
    • Индикаторы звука
    • Предварительные усилители звука
    • Примочки для электрогитары
    • Регуляторы тембра
    • Транзисторный усилитель звука
    • Усилители звука автомобильные
    • Усилители звука на микросхемах
  9. Транзисторный усилитель звука
  10. Примочки в блоках питания
  11. Компьютеры
    • Настройка
    • Примочки для ПК
    • Ремонт
  12. Усилители звука автомобильные
  13. Ветрогенератор
  14. Ремонт Автомагнитол
  15. Справочник компонентов
  16. Усилители звука на микросхемах
  17. Импульсные блоки питания
  18. Ремонт Телефонов
  19. Ремонт
  20. Инструменты электронщика
  21. Ремонт Аудио Видео
  22. Ремонт Электроники
    • Ремонт Автомагнитол
    • Ремонт Аудио Видео
    • Ремонт блока питания
    • Ремонт бытовой техники
    • Ремонт Телефонов
  23. Индикаторы звука
  24. Высоковольтный генератор
  25. Регулятор напряжения, тока
  26. Электродвигатели
  27. Самодельные сварочные аппараты
  28. Сварочные аппараты
    • Самодельные сварочные аппараты
    • Ремонт сварочные аппаратов
  29. Ремонт бытовой техники
  30. Мигалки и пищалки
  31. Полезное из интернета
  32. Азбука радиолюбителя
  33. Примочки для ПК
  34. Источники питания
    • Зарядные устройства
    • Импульсные блоки питания
    • Преобразователи 220В
    • Примочки в блоках питания
    • Регулятор напряжения, тока
    • Сварочные аппараты
  35. Ремонт блока питания
  36. Примочки для электрогитары
  37. Сварочные аппараты
  38. Датчики

Спонсоры В гараже

  1. Мотоэлектрика
  2. Все темы
  3. Автоэлектрика

Прочие темы

  1. Сайт на WordPress
  2. Химия
    • Гальваника
    • Химические соединения
  3. Настройка ТВ
  4. Гальваника
  5. Настройка Интернета
  6. Настройка Android
  7. Химические соединения
  8. Покупки Aliexpress

Подписаться на обновления Мастерская в Контакте500+ подписчиков Мастерская в Одноклассниках200+ подписчиков По электронной почте200+ подписчиков Пожалуйста, оставьте это поле пустым.Ваша электронная почта * Проверьте ваш почтовый ящик, чтобы подтвердить свою подписку. Инструмент дешевле тут Купить сейчас со скидкой Осциллограф DSO138

Характеристики:Частота дискретизации 1 mspsВходное напряжение 50vppШирина полосы: 0 — 200 кГцЧувствительность: 10 мВ / делБуфер 1024 байтовТочность 12 bit Цена 1228 руб.

Купить Вы нашли нужную информацию?! Внесите вклад в развитие сайта, пожертвовав любую сумму!

Отправить Спонсоры Страницы

  1. Поделиться статьей
  2. Нужен проект печатной платы
  3. О мастерской
  4. Интернет магазины радиодеталей
  5. Связаться с автором
  6. Реклама на сайте

Опросы Как вам мой сайт

  1. Хороший
  2. Плохой

Просмотреть результаты

Загрузка . Друзья сайтаDiodnik — Электронный журнал радиолюбителя Копирование материала разрешено только с ссылкой на этот сайт Политика конфиденциальности | Пользовательское соглашение © 2013–2020 МАСТЕРСКАЯ ЭДУАРДА ОРЛОВА

На Отечественной Элементной Базе: Простое ЗУ на тиристоре для АКБ авто

15 июня Сейчас в сети, на ресурсах радиолюбительской тематики, нет недостатка в плане схемотехники различных зарядных устройств для автомобильного аккумулятора.

Можно найти ЗУ полностью автоматические, полуавтоматические или же вовсе простые. В этой статье, я предлагаю вспомнить одну из базовых схем зарядного устройства на тиристоре. Схема интересна тем что она крайне проста, надёжна и выполнена полностью на отечественной элементной базе.

Наверняка, те радиолюбители, кто занимается конструированием зарядок, собирали её в том или ином виде.

Данная схема представляет из себя не что иное, как адаптированный регулятор мощности с фазоимпульсным управлением. Имеется возможность электронной регулировки зарядного тока от 0 до 10 А.

А сама форма зарядного тока близка к импульсной, с частотой 100 Гц.

Есть мнение, что для кислотно-свинцовых АКБ такой режим заряда наиболее предпочтителен.

А ещё эту схему можно применять в гаражных условиях в качестве регулируемого источника питания для мощного низковольтного паяльника или вулканизатора.

Для ЗУ потребуется сетевой понижающий трансформатор со вторичной обмоткой на 18 — 22 В. Естественно, для того чтобы обеспечить необходимый зарядный ток, он должен быть соответствующей мощности. Напряжение со вторичной обмотки трансформатора T1 выпрямляется диодным мостом VD1-VD4. На схеме указаны диоды Д245, но можно использовать и другие, рассчитанные на прямой ток 10 А и обратное напряжение от 50 В, например, Д242, Д243, КД203, КД210 или КД213.
На схеме указаны диоды Д245, но можно использовать и другие, рассчитанные на прямой ток 10 А и обратное напряжение от 50 В, например, Д242, Д243, КД203, КД210 или КД213.

Аккумуляторная батарея подключена к диодному мосту через тиристор VS1, управляет которым фазоимпульсная схема на транзисторах VT1, VT2. Сама схема управления — это аналог однопереходного транзистора. Время, в течение которого конденсатор С2 заряжается до переключения однопереходного транзистора, можно регулировать переменным резистором R1.

При крайнем правом по схеме положении его движка зарядный ток будет максимальным, и наоборот.

Диод VD5 защищает управляющую цепь тиристора от обратного напряжения, возникающего при включении VS1. Конструктивно детали схемы управления (выделены пунктирной линией) размещают на , показанной на рисунке ниже. Диоды выпрямительного моста и тиристор размещают на теплоотводах, из расчета полезной площади от 100 см2 на каждый элемент.

Вместо указанных на схеме транзисторов, допустимо применить обычные КТ315/361. А в качестве тиристора: Т160, Т250 или серию КУ202 с буквенным индексом В, Г, Е.

Зарядное устройство для аккумулятора автомобиля: как сделать своими руками, варианты, схемы, правила

Помните старую комедию «Берегись автомобиля»?

«С плохим аккумулятором – разве это жизнь?» Чтобы аккумулятор вел себя всегда хорошо, держать его все время подключенным к бортовой сети нельзя, нужен периодический подзаряд от автономного зарядного устройства, особенно в зимнее время; почему – см. далее. Сделать зарядное устройство для автомобильного аккумулятора своими руками возможно, владея начальными приемами электромонтажных работ. Обойдется самодельная автозарядка из купленных вразброс комплектующих дешевле фирменной; случай для современной электроники, надо сказать, нетипичный.

Это во-первых. Во-вторых, изготовление автозарядки своими руками – хорошая переходная ступень от элементарных электроцепей типа выключатель – лампочка к серьезной электронике. В отличие от «пионерских» поделок на столе оно сразу даст навыки работы с достаточно большими токами и механического оформления конструкции.

В настоящем материале рассказывается, как правильно сделать зарядное устройство для автоаккумулятора.

Автозарядка состоит из первичного источника электропитания для собственно зарядного устройства, которое обеспечивает заданный режим заряда аккумуляторной батареи, и схем защиты ее от разного рода нештатных ситуаций.

Схемотехнически эти узлы могут быть в той или иной степени объединены.

Далее для краткости употребляются след. сокращения:

  1. ИП – любой другой источник питания.
  2. УЗ – устройство защиты.
  3. ЗН – защита от перенапряжения.
  4. АКБ – аккумуляторная батарея.
  5. ТЗ – защита по току.
  6. ПИ – первичный источник питания.

Свинцово-кислотные аккумуляторы отличаются «дубовостью», эксплуатационной выносливостью, отчего и держатся нерушимо в автотранспорте. Причина – простота электрохимических процессов в свинцово-кислотной АКБ.

Для контроля за ее текущим состоянием в большинстве случаев достаточно знать величину напряжения всей батареи без разбивки по банкам. Но перезаряд свинцово-кислотной АКБ может вызвать вскипание электролита в ней. На ходу автомобиля это очень опасно, поэтому в бортсети АКБ хронически недозаряжается.

Постоянный недозаряд приводит к преждевременной сульфатации пластин и снижению ресурса АКБ.

Ситуация усугубляется в холодное время года, даже если гараж или место стоянки отапливается, т.к.

до комнатной температуры их не греют. Если же в перерывах между поездками дозаряжать АКБ по максимуму, сколько она способна принять энергии при данной наружной температуре, то «акумыч» проживет хорошо и долго даже в суровых условиях. Дозаряд АКБ как раз и обеспечивает зарядное устройство для аккумулятора, но это еще не все.

Правильно построенное зарядное устройство дает также десульфатирующий эффект.

Если зимой ежесуточно на ночь снимать АКБ и ставить на дозаряд, она выдерживает количество циклов заряд-разряд в 1,5-2 раза против прописанного в ТУ в расчете на типовой режим эксплуатации. Также зарядка с десульфатацией иногда способна спасти АКБ, «убитую», напр., при попытках завести машину на холоде.

И, наконец, емкость неиспользуемой АКБ за месяц падает на 15-30% вследствие саморазряда. Если же на это время поставить АКБ на содержание под током от зарядки (см. далее), то аккумулятор будет всегда свежим. И, между прочим, постановка неиспользуемой АКБ на содержание также уменьшает сульфатацию пластин.

И, между прочим, постановка неиспользуемой АКБ на содержание также уменьшает сульфатацию пластин. Свинцовые АКБ заряжают током, равным току их 10-часового разряда: 6 А для АКБ на 60 А/ч, 9 А для 90 А/ч, 12 А для 120 А/ч.

Больший ток вызовет перегрев и, возможно, вскипание электролита, отчего ресурс батареи резко снижается вплоть до полной негодности. Меньший зарядный ток ресурс АКБ практически не увеличивает, но удлиняет время заряда. Зарядный ток в АКБ течет обратно рабочему.

Важнейшее условие при этом – напряжение на АКБ не должно превысить 2,7 В на банку (8,1 В для 6 В АКБ, 16,2 В для 12 В АКБ, 27 В для 24 В АКБ), иначе начнется химическое разложение электролита, пластин, и АКБ закипит даже при небольшом зарядном токе.

Чтобы полностью исключить закипание, допустимое напряжение заряда ограничивают 2,6 В на банку (7,8 В, 15,6 В, 26 В соотв.); при этом недозаряд по энергии составит менее 5% и усиления сульфатации не будет. Если отключить полностью заряженную АКБ от ЗУ, дать ей остыть и померить напряжение без нагрузки, увидим 2,4 В на банку (6,8 В, 14,4 В, 24 В).

В работе при разряде напряжение АКБ плавно падает до 1,8 В на банку (5,4 В, 10,8 В, 21,6 В), после чего батарея считается полностью разряженной.

На самом деле в ней остается ок. 25% «закачанной» при заряде энергии, и способы «высосать» ее в экстренной ситуации до последнего эрга есть, но АКБ после этого придется сдать на утилизацию. Выбрасывать нельзя, там свинец.

Температурная зависимость напряжения полностью заряженной АКБ существенна. Если дать заряд на АКБ, еще не остывшую от экстратока разряда (стартер в момент пуска берет до 600 А, а крутящий до 75 А), то напряжение на ней может резко прыгнуть, т.к. отклик свинцового аккумулятора током потребления на скачок приложенного напряжения сильно, по меркам электроники, затянут, до десятков мс.

Получим саморазогрев и вскипание электролита на борту. Поэтому в бортсети машины напряжение на АКБ ограничивают 2,35 В на банку (7,05 В, 14,1 В, 23,5 В), что и вызывает хронический недозаряд. При заряде от внешнего ЗУ напряжение на АКБ ограничивают величиной 2,4 В на банку (6,8 В, 14,4 В, 24 В), т.к.

«наливать энергии по горлышко», до 2,6 В на банку, рискованно – АКБ при заряде греется и может уйти в саморазогрев. Полностью АКБ дозаряжают и предохраняют от саморазряда т. наз. током содержания, равным 0,5-1 тока 100-часового разряда (0,3-0,6 А, 0,45-0,9 А и 0,6-1,2 А для АКБ на 60 А/ч, 90 А/ч и 120 А/ч соотв.); напряжение на батарее при этом не должно превысить 2,6 В на банку.

Практически для этого в ЗУ ставят защиту от перенапряжения на 15,6 В для 12 В АКБ, 7,8 В и 26 В для 6 В и 24 В АКБ.

Если она сработала, АКБ приняла энергии, сколько может, и дальше ее заряжать нельзя. Исходя из условий эксплуатации индивидуального автотранспорта и указанных условий режима заряда АКБ, требования к ЗУ для автоаккумулятора вырисовываются такие:

  1. Также УЗ должно обеспечивать защиту от переполюсовки, т.е. неправильного, в обратной полярности, подключения АКБ. При соблюдении условий по п. 3 защита от переполюсовки обеспечивается автоматически.
  2. ПИ ЗУ должен обеспечивать стабильное напряжение 14,4 В, допустимо, в случае, когда на УЗ есть падение напряжения, 15,6 В;
  3. УЗ должно обеспечивать необратимое отключение АКБ от ЗУ как при превышении тока заряда, так и при повышении напряжения на АКБ свыше 15,6 В. Необратимое значит, что УЗ должно быть самоблокирующимся, т.е. для сброса его в исходное состояние нужно будет выключить и снова включить ИП;
  4. Самодельное ЗУ для автоаккумулятора должно быть автономным, не требующим присмотра и контроля тока/напряжения заряда, т.к. АКБ будет ставиться на заряд преимущественно на ночь;

В случае переполюсовки АКБ возможны 2 случая: АКБ исправна недозаряжена либо глубоко разряжена и/или «доходная», истощенная, в значительной степени выработавшая ресурс, или же на заряд неправильно подключают полностью заряженную батарею. В первом случае (исправна недозаряжена) ток заряда увеличивается сверх номинального.

Во втором перед этим на короткое время «прыгнет» напряжение АКБ сверх заданного ИП, а потом сразу «шарахнет» экстраток и АКБ вскипит.

В последней ситуации, чтобы спасти АКБ от непоправимой порчи, ее нужно успеть отключить по перенапряжению. Поговорим вначале и типичных ошибках конструирования самодельных ЗУ для свинцовых АКБ.

Первую иллюстрируют поз. вверху.

Подключение непосредственно к бытовой электросети (слева) обсуждения не стоит.

Это не ошибка, это грубейшее и опасное нарушение ПТБ. Ошибка – в ограничении тока заряда емкостным балластом. Дорогой, кстати, это способ по сегодняшним меркам: одна только батарея масляно-бумажных конденсаторов на 32 мкФ 350 В (на меньшее напряжение нельзя) стоит больше, чем хорошая фирменная зарядка.

Неправильно и нерационально построенные схемы зарядных устройств для автомобильных аккумуляторов Но главное – в сети появляется реактивная нагрузка. Если в вашем электросчетчике есть индикатор реактивности (светодиод «Возврат»), то при включении этих зарядок в сеть он вспыхнет.

Управление современным электрохозяйством невозможно без компьютеров, а «обратка» сбивает электронику с толку даже до отключений по ложной аварии. Поэтому теперешние электрики к реактивке беспощадны. Ну, а вдруг обнаружится, что ее источник неграмотный или излишне хитроумный потребитель, то… не будем на ночь глядя.

Схема внизу, если на считать того же емкостного балласта, разработана квалифицированно, это ЗУ защитит АКБ, образно говоря, и от Тунгусского метеорита; (с подробным ее описанием можно познакомиться здесь: http://ydoma.info/avtomobil-zaryadnoe-ustrojstvo-dlya-avtomobilnogo-akkumulyatora.html). Но, при всем уважении к безусловно знающему свое дело автору, строить так сложно (и дорого) ЗУ для свинцовых АКБ все равно что назначать командовать взводом опытных закаленных солдат нянечку из детсадика.

Свинцовому аккумулятору для хорошей жизни нужно немногое. Чем мы далее и займемся. УЗ для АКБ что броня для танка, так что с него и начнем.

УЗ для самодельного ЗУ АКБ желательно делать, разумеется, попроще.

Далее, УЗ также желательно строить автономным, чтобы через него можно было подключать АКБ к любому ЗУ, схема которого вам приглянется, или которое у вас уже есть. И последнее, УЗ должно срабатывать как можно четче и быстрее, для возможности использования его в схемах заряда современных аккумуляторов с герметичными банками. Малоэффективные схемы защиты автоаккумуляторов Простейшая защита от переполюсовки диодами Шоттки (слева на рис.) не спасет от экстратока перезаряда или при неправильном подключении исправной недозаряженной АКБ.

Разве что путем сгорания недешевой диодной сборки. Если аккумулятор «новый, хороший», то, пока руки не дойдут до «нового, хорошего» ЗУ, может выручить интегрированная защита по схеме справа; ее можно встроить в уже имеющийся самодельный лабораторный ИП. В данной схеме используются медленный отклик АКБ на скачок напряжения и гистерезис реле: их ток (и напряжение) отпускания в 2,5-4 раза меньше тока/напряжения срабатывания.
В данной схеме используются медленный отклик АКБ на скачок напряжения и гистерезис реле: их ток (и напряжение) отпускания в 2,5-4 раза меньше тока/напряжения срабатывания. Любое ЗУ АКБ включают только с подключенной АКБ.

Реле – переменного тока на напряжение срабатывания 24 В и ток через контакты от 6 (9, 12) А. При включении ЗУ реле срабатывает, контакты его замыкаются, пошел заряд.

Напряжение на выходе трансформатора падает ниже 24 В, но на выходе ЗУ остается 14,4 В, выставленных заранее под нагрузкой R3 в схеме стабилизации напряжения. Реле пока держит, но, вдруг пошел экстраток, первичное напряжение просядет больше, реле отпустит и цепь заряда разорвется. Недостатки у этого ЗУ серьезные.

Во-первых, нет защиты от скачка напряжения по выходу от переполюсовки истощенной АКБ. Во-вторых, нет самоблокировки: от экстратока реле будет хлопать и хлопать, пока контакты не обгорят.

В-третьих, нечеткое срабатывание: любое реле по недонапряжению на обмотке отпускает с дребезгом контактов. Поэтому пытаться ввести в эту схему регулировку тока срабатывания бессмысленно. И, наконец, реле и трансформатор Т1 должны быть подобраны друг к другу, т.е.

повторяемость данного устройства близка к нулевой. Схема УЗ, полностью соответствующая указанным выше требованиям, дана на рис.: Простая схема защиты аккумулятора автомобиля от перезаряда, перенапряжения и переполюсовки Ток заряда течет через нормально замкнутые контакты реле K1, что намного уменьшает вероятность их обгорания. Обмотка K1 подключена по логической схеме диодного «или» к модулю защиты от экстратока (R1, VT1, VD1), модулю защиты от перенапряжения (R2, R3, R4, VT2, VD2) и цепи самоблокировки K1.2, VD3; порог срабатывания K1 по перенапряжению устанавливается R3.

Недостаток у этого УЗ всего один, его нужно налаживать с использованием балластной нагрузки и мультиметра:

  1. Выпаивают (или пока не запаивают) K1, VD2 и VD3.
  2. Впаивают на место VT1 и VD3 – схема готова к финальным испытаниям.
  3. Уменьшают напряжение ЗУ до записанного ранее значения.
  4. Через амперметр подключают исправную недозаряженную АКБ; к ней – мультиметр, установленный на напряжение.
  5. Уменьшают немного напряжение ЗУ, пока мультиметр не покажет 0. Записывают полученное значение выходного напряжения ЗУ. Альтернатива – неизменное напряжение ЗУ и трудоемкая подгонка R1.
  6. Если ток содержания великоват, еще немного уменьшают напряжение ЗУ.
  7. VT1 выпаивают, K1 и VD2 запаивают на место, движок R3 ставят в крайнее нижнее по схеме положение.
  8. Плавно вращают движок R3 до срабатывания K1.
  9. Вместо АКБ подключают резистор не менее чем на 25 Вт сопротивлением 2,4 Ом для тока заряда 6 А, 1,6 Ом на ток заряда 9 А и 1,2 Ом на ток 12 А; его можно накрутить из той же проволоки, что и R1.
  10. Вместо обмотки K1 включают мультиметр, установленный на измерение напряжения 20 В.
  11. Пробный заряд проводят с непрерывным контролем. Когда мультиметр покажет 14,4 В на АКБ, засекают ток содержания. Скорее всего он будет в норме для данной АКБ (см. выше); желательно, чтобы ближе к нижнему пределу.
  12. Напряжение ЗУ увеличивают, пока на нагрузке не окажется 15,6 В.
  13. Подают на вход напряжение 15,6 В от ЗУ. Мультиметр покажет напряжение (токовая защита сработала), т.к. сопротивление R1 выбрано с небольшим избытком.

Примечание: чтобы не резать много раз нихром для R1 – его удельное сопротивление 1 Ом*м/кв.

мм. Т.е., 1 м нихромовой проволоки сечением 1 кв.

мм имеет сопротивление 1 Ом. В наши дни компьютерный импульсный блок питания (ИБП) может оказаться доступнее трансформатора на железе; вдруг он просто в хламе валяется.

ИБП часто переделывают в лабораторные БП, но, вообще говоря, это плохой вариант. Выходное напряжение по каналу +12 В удается задрать максимум до 16-17 В, чего для конструкторско-исследовательских целей маловато. А уровень импульсных помех на выходе тогда, мягко говоря, великоват.

Как налаживать УМЗЧ с собственными шумами в –66 дБ (что еще очень скромненько), если по питанию «шерсти прет» на –44 дБ или хуже того?

Но вот зарядка для аккумулятора автомобиля на 60 А/ч из ИБП получается отличная, и отдельную защиту городить не надо, все уже есть. Переделывают ИБП в авто ЗУ в целом след. образом:

  • Вращая движок Rн, устанавливают в канале +12 В напряжение +14,4 В;
  • По схеме или руководствуясь собственным опытом, ищут в обвязке стабилизатора +12 В резистор в цепи обратной связи Rcs;
  • По возможности встраивают в ИБП универсальный указатель напряжения и тока (см. далее) для контроля заряда, питание его – от цепи заряда или +5 В (красный провод);
  • Удаляют выходные провода кроме желтых (+12 В), черных (общий, масса, GND) и зеленого провода логического включения PC ON;
  • Заменяют его потенциометром на 10 кОм Rн;
  • Провод PC ON закорачивают на массу (соединяют с любым из черных);
  • Замеряют полученное значение Rн и вместо Rcs впаивают постоянный резистор ближайшего номинала из стандартного ряда, допуск на разброс до 2%;
  • Сводят желтые и черные провода в отдельные жгуты, надежно присоединяют к ним токовые шланги с зажимами для подключения к АКБ – зарядка готова!
  • Ставят механический выключатель сети, если нет штатного сзади;

Примечание: подробно два варианта переделки ИБП в ЗУ АКБ можете посмотреть на видео ниже.

Если лишнего ИБП под рукой нет, то для ИП ЗУ нужно искать трансформатор на железе, его собственная постоянная времени (электрическая инерция) больше таковой АКБ, что очень хорошо по безопасности пользования. «Лепить» самодельный ИБП ни в коем случае не надо, его постоянная времени по выходу на 2 порядка меньше, чем у АКБ.

Самодельный ИБП для ЗУ без сложных встроенных схем защиты способен стать причиной разного рода нештатных ситуаций.

Помните – кипение электролита это туман и брызги крепкой ядовитой кислоты!

А если АКБ с герметичными банками, то возможен и ее взрыв! ИП ЗУ состоит из понижающего трансформатора и выпрямителя.

Сглаживающий фильтр для зарядки АКБ не нужен.

Трансформатор ИП ЗУ рекомендуют искать силовой с накальными обмотками от старых ламповых телевизоров – ТС-130, ТС-180, ТС-220, ТС-270.

По мощности они годятся с избытком, но, во-первых, от влаги никак не защищены, в гараже могут и не перезимовать. Во-вторых, специалисты по вторичным металлам прекрасно знают, сколько выручки дает ТС, и найти их становится все труднее.

Понижающие трансформаторы типов ТП и ТПП Если нет желания и/или возможности рассчитать и намотать трансформатор самому, для ИП ЗУ лучше будет купить трансформатор ТП или ТПП, они дешевле, чем ИБП б/у. Мощность – от 50 Вт, ее указывают последние 2 цифры в обозначении типономинала, напр.

ТПП 36-220-80. 3 цифры в середине – рабочее напряжение первичной обмотки, а первые 2 или 3 кодируют количество и напряжение вторичных обмоток, оно 6,3 или 12,6 В на обмотку.

Предпочтение следует отдавать трансформаторам в паровлагозащищенном исполнении («зеленым», слева на рис.), они способны неограниченно долгое время работать в атмосфере с влажностью 100% и примесями химически агрессивных паров. Трансформатор с обмотками на каркасе из плавкого пластика (справа) – вариант на самый крайний случай.

Такие не рассчитаны на эксплуатацию в условиях ЗУ: работу свыше 50% времени использования на полной мощности с систематическими перегрузками по току.

Вдруг берете такой, его мощность нужна от 120 Вт.

Примечание: ТП и ТПП лучше брать на одно первичное напряжение 220 В, такие при прочих равных условиях на 10-15% дешевле. Типовые схемы соединения обмоток ТП и ТПП на 12,6 В под выпрямление мостом или двухполупериодное со средней точкой даны на рис.

слева и справа: Схемы соединения обмоток типовых трансформаторов питания У конкретного экземпляра они могут отличаться, т.к. производители вправе произвольно менять разводку выводов по ТУ заказчика.

Остатки идут в продажу, а выпуск особо популярного типономинала может быть продолжен для рынка. Поэтому, приобретая ТП или ТПП, сверяйтесь со спецификацией к нему; если ее нет, придется вызванивать обмотки.

Общие правила разводки выводов и соединения обмоток ТП/ТПП такие:

  • Для последовательного соединения обмоток нечетные выводы соединяются с четными.
  • Сетевые (первичные) обмотки выводятся на первые номера.
  • Межобмоточные экраны выводятся на последние номера.
  • Для соединения обмоток в параллель нечетные выводы соединяются с нечетными; четные – с четными.

Примечание: выводы экранов (15 и 16) можно комбинировать как угодно, т.к. межобмоточные экраны не являются короткозамкнутыми витками.

Вариант подешевле – присмотреть на железном базаре старый накальный трансформатор ТН; система обозначений аналогична ТП/ТПП. «Кладоискатели» до ТНов не охочи: возни с разборкой много, медяшки мало.

Типовая схема включения ТН для ЗУ дана на врезке в центре рис. Переключать, для повышения выходного напряжения, нижний по схеме диод с вывода 15 на 16 нельзя, нарушится симметрия обмоток! Выходные напряжения на схемах выше даны для входного (сетевого) 220 В.

Если оно упадет, пойдет недозаряд. Вместе с тем, поскольку АКБ на заряд от внешнего ЗУ ставят холодной, остается некоторый запас на увеличение напряжения заряда; его возможно использовать полностью, если ЗУ с защитой. В таком случае выпрямитель нужно делать со средней точкой на сборке диодов Шоттки – выходное напряжение увеличится прим.

на 0,6 В. Современные диоды Шоттки с платиновым барьером для использования в ЗУ АКБ вполне пригодны, см.

спецификацию на рис.: Спецификация на сборку диодов Шоттки для выпрямителя зарядного устройства автоаккумулятора Кроме того, на сборку из пары диодов Шоттки нужен радиатор от 50 кв.

см, а каждому обычному, с p-n переходом, на ток до 10 А – от 100 кв. см. Брать сборки Шоттки нужно с максимальным обратным напряжением от 35 В и пиковым прямым током от 30 А, т.к. в схеме выпрямителя со средней точкой соотв.

величины достигают 1,7 амплитудного значения напряжения вторичной обмотки и 2,4 выпрямленного тока (31 В и 24 А при 12,6 В и 10 А; начальный пиковый ток заряда полностью разряженной АКБ на 60 А/ч – 10 А).

Область применения управляемых тиристорных выпрямителей ограничена из-за создаваемых ими больших коммутационных помех на выпрямленном напряжении. Но в ЗУ эти помехи не помеха, АКБ погасит. Зато по прочим свойствам тиристорные выпрямители для заряда АКБ не просто подходят, но подходят идеально.

Дело в том, что после тиристорного выпрямления без сглаживания зарядный ток на АКБ подается короткими импульсами с обрезанным фронтом увеличенной (но не чрезмерно) амплитуды. Как следствие, зарядка для авто аккумулятора с тиристорным выпрямителем дает десульфатирующий эффект без каких-либо дополнительных премудростей.

И, что тоже важно, вероятность ухода АКБ в саморазогрев при заряде от тиристорного ЗУ на порядок меньше: ненужная электрохимия успевает рассосаться в промежутках между импульсами. Еще плюс такой же, как у диодов Шоттки: радиатор для пары тиристоров нужен той же площади, что для сборки Шоттки.

Простоты ради тиристорные ЗУ часто строят по схеме однополупериодного выпрямления, см. рис.: Тиристорные зарядные устройства для автоаккумуляторов с однополупериодным выпрямлением Нижняя схема самая дешевая, т.к. для управления силовым тиристором вместо маломощного тиристора используется его аналог на транзисторах, он вдвое-втрое дешевле.

Схема справа вверху самая дорогая из-за совсем недешевого промышленного тиристора Т122-25, к которому нужен еще и антишумовой фильтр C1T1C2.

В остальном эти ЗУ равноценны. Недостаток у однополупериодных тиристорных ЗУ один, но фатальный – то самое однополупериодное выпрямление. Половина первичных полуволн тока пропадает.

Чтобы не затягивать заряд вдвое, приходится соотв. увеличивать амплитуду зарядного импульса.

Она выходит за допустимые пределы, и преимущества тиристорного выпрямления сводятся на нет. Наоборот, однополупериодное тиристорное ЗУ опаснее для АКБ, чем диодное. Схемы ЗУ для автоаккумуляторов с двухполупериодным тиристорным выпрямлением сохраняют все его достоинства и лишены указанного выше недостатка.

Но подход к построению тиристорного выпрямителя нужен соответственный. Напр., схема слева на рис. – типично любительская. Выпрямитель сделан аналогично диодному мосту, что вдвое увеличивает падение напряжения на нем и требует пары совсем ненужных довольно дорогих компонент.

Коммутационные помехи от такого ЗУ сильные, и нужно мотать нетиповой трансформатор. Схемы тиристорных зарядных устройств для автоаккумуляторов с двухполупериодным выпрямлением Близка к оптимальной для тиристорных схема известной автозарядки Amperus, справа на рис. Ее авторы позаботились и о хорошей антишумовой развязке цепей управления, что позволяет использовать Amperus в квартире.

Единственный небольшой недостаток – ток и напряжение заряда взаимозависимы, т.к. выставляются совместно резистором на 1 кОм. Поэтому использовать Amperus желательно с УЗ (см.

выше). Очень хорошее простое и недорогое зарядное устройство для аккумулятора автомобиля может быть построено на основе универсального преобразователя DC/DC TC43200; он представляет собой импульсный тиристорный преобразователь напряжения с раздельными независимыми регулировками ограничения по току и величине стабилизированного выходного напряжения, слева на рис. TC43200 можно купить на том же Али Экспресс, а по расходам сравнительно со схемами на россыпи – отдельных дискретных компонентах, и радиаторами к ним, для ЗУ на TC43200 там же можно приобрести универсальный указатель тока/напряжения (в центре) и не требующий радиатора диодный мост на 10 А, напр.

KBPC5010. Все вместе выйдет дешевле.

Простое недорогое зарядное устройство для аккумулятора автомобиля на преобразователе напряжения TC43200 Схема ЗУ АКБ на TC43200 дана справа. Входное напряжение – от 18 В; емкость C1 достаточна 220 мкФ.

Налаживание предельно простое:

  1. Замыкаем выход накоротко;
  2. Регулятором напряжения устанавливаем на нем 14,4 В или 15,6 В для использования со схемой защиты.
  3. Регулятором тока выставляем нужный ток заряда, до 10 А;
  4. Регулятором напряжения выставляем 5 В на выходе;
  5. Раскорачиваем выход (нагрузка не нужна);
  6. Включаем ЗУ без нагрузки;

Недостатки TC43200 невелики и легко устранимы – радиаторы маловаты, а встроенной аварийной защиты нет.

Длительной работы в режиме КЗ TC43200 не выдержит и АКБ от вскипания не спасет. Поэтому ЗУ на TC43200 требуется отдельное защитное устройство наподобие описанного выше.

Последние новости по теме статьи

Важно знать!
  • В связи с частыми изменениями в законодательстве информация порой устаревает быстрее, чем мы успеваем ее обновлять на сайте.
  • Все случаи очень индивидуальны и зависят от множества факторов.
  • Знание базовых основ желательно, но не гарантирует решение именно вашей проблемы.

Поэтому, для вас работают бесплатные эксперты-консультанты!

Расскажите о вашей проблеме, и мы поможем ее решить! Задайте вопрос прямо сейчас!

  • Анонимно
  • Профессионально

Задайте вопрос нашему юристу!

Расскажите о вашей проблеме и мы поможем ее решить!

+